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Department of Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey

Received 23 July 2002 / Received in final form 18 September 2002
Published online 31 December 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. To investigate the performance of the energy landscape paving (ELP) procedure for peptides, we
apply it here to deltorphin, a linear heptapeptide with bulky side chains (H-Tyr1-D-Met2-Phe3-His4-Leu5-
Met6-Asp7-NH2) and compare the results with the Multicanonical method (MUCA) in regard of finding
the low-energy structures. Deltorphin is modeled in vacuum by the potential energy function ECEPP.

PACS. 02.70.-c Computational techniques – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) –
82.20.Wt Computational modeling; simulation

The conformation space of proteins and peptides presents
a complex energy profile consisting of a tremendous num-
ber of local minima separated by energy barriers. An ideal
simulation scheme should freely visit the entire space and
predominantly sample the significant conformations and
also the transition states without generating many unim-
portant conformations. Because of energy barriers, con-
ventional simulations in the canonical ensemble are of lit-
tle use, they tend to get trapped in states of these energy
local minima and the results thus will depend strongly on
the initial conditions. One way to overcome this problem
is to perform simulation in a generalized-ensemble where
each state is weighted by non-Boltzman probability weight
factor, so that a flat histogram in potential energy space
may be realized. This allows the simulation to escape from
any energy barrier and to sample much wider phase space
than by conventional methods.

One of the most well-known, powerful generalized-
ensemble methods is the Multicanonical algorithm
(MUCA) [1]. But, in multicanonical procedure, the prob-
ability weight factors are not a priori known and have to
be determined by iterations of trial simulations. This part
of simulation can be non-trivial and very tedious for com-
plex systems with many local minimum energy states. The
other generalized-ensemble approaches, for example sim-
ulated tempering, 1/k sampling, replica-exchange meth-
ods are reviewed in references [2] and [3]. Application of
the multicanonical approach to peptides was pioneered by
Hansmann and Okamoto [4] and followed by others [5].

A considerably less attention has been paid to the fact
that the system with Boltzmann statistics repeatedly vis-
its the catchment basins that have previously been visited.
If the goal is surveying the potential energy landscape,
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such events should be controlled because many of them
bear no new information about the conformational space.

Recently, Wille and Hansmann [6] introduced a new
global optimization method, energy landscape paving
(ELP), which is designed to deform the energy surface
to escape local minima as well as to direct the search to-
wards the unexplored regions. ELP samples the significant
local minima and the transition states without generat-
ing too many unimportant conformations. We would like
to remind the reader that MUCA and other generalized-
ensemble techniques provides one to obtain thermody-
namic averages and fluctuations at different temperatures.
However such feature is missing in ELP runs because it
is essentially a Monte Carlo run at a pre-choosen low-
temperature. Our aim in this work is to utilize the ELP
method to find the global energy minimum (GEM) and
the stable microstates pertaining to it and compare its
efficiency to MUCA, rather than a complete thermody-
namical investigation. Recently, an extensive comparison
of ELP with simulated annealing has been made by Hsu
et al. [7].

The central feature of ELP is to perform Monte Carlo
(MC) simulation with a modified energy expression which
enables to keep the search away from the already explored
regions.

The weight for a state is taken as

w(Ẽ) = e−Ẽ/kBT , (1)

where T denotes temperature and Ẽ is the following re-
placement of the energy E:

Ẽ = E + f(H(q, t)) (2)

where f(H(q, t)) is a function of the histogram H(q, t)
in a chosen “order parameter” q. In order to test the
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efficiency of ELP, we adopted the simplest case and used
the potential energy itself as an order parameter and the
weight is generated by Ẽ = E + H(E, t) where H(E, t)
is the histogram in energy. The histogram is updated at
each MC step, hence the “time” dependence of H(E, t),
and normalized over the number of sweeps.

In a canonical simulation, the probability to escape a
local minima depends on the height of energy barriers. On
the other hand, within ELP the probability to escape a lo-
cal minimum increases with the increase in the histogram
entries of that minimum, which in turn reflects the time
the system stays in that minimum. During the simulation
time, ELP smooths out the energy landscape locally in
such way that the local minimum is no longer favored.

In this paper, we take an interest in the efficiencies
of ELP and MUCA methods as applied to molecules
of increasing size and examine the performance of the
procedures in studying the low energy conformations.
A step in this direction is carried out in this paper
where ELP is applied and compared with MUCA to
linear heptapeptide with bulky side chains, deltorphin
(also known as dermenkephalin) (H-Tyr1-D-Met2-Phe3-
His4-Leu5-Met6-Asp7-NH2). We have recently carried out
a detailed study of deltorphin by multicanonical simula-
tion [8]. This natural peptide found in frog skin, has high
potency and receptor selectivity for δ opioid receptors. To
understand the conformation-activity relationships, NMR
studies of the solution structures of deltorphin in DMSO
and cryoprotective solvents were carried out [9] and com-
putational work based on these experiments was carried
out as well [10].

Deltorphin is modeled by the ECEPP/2 potential [11],
which assumes a rigid geometry, and is based on non-
bonded, Lennard-Jones, torsional, hydrogen-bond, and
electrostatic potential terms with the dielectric constant
ε = 2. This potential energy is implemented into the soft-
ware package FANTOM [12]. We further fix peptide bond
angles ω to their common value 180o, which leaves us
with 36 dihedral angles as independent degrees of free-
dom (nF = 36). At each update step, a trial conformation
was obtained by changing one dihedral angle at random
within the range [−180o; 180o], followed by the Metropolis
test and an update of the suitable histogram. The dihe-
dral angles were always visited in a predefined (sequential)
order, going from Tyr to Asp; a cycle of N MC steps is
called a sweep.

As pointed out in the Introduction, the characteris-
tic behavior of ELP methods is shown in Figure 1 which
is the time series of 5 × 105 sweeps for the ELP simu-
lation of deltorphin at T = 50 K. For comparison, the
standard Monte Carlo simulation at T = 50 K shows
a time series confined to rather narrow range of energy
−33 kcal/mol ≤ E ≤ −28 kcal/mol. The ELP time se-
ries has the typical time-dependent feature of continu-
ously extending the covered range of energy. After long
enough time elapsed, the time series becomes like the one
achieved by multicanonical simulation. Another important
feature one sees from the time series is that the simulation
gets trapped in a local minima in the energy landscape,

Fig. 1. Time series of the energy landscape paving simulation
of deltorphin. For comparison, the standard Monte Carlo sim-
ulation at T = 50 K is performed and a time series fluctuating
within a rather narrow range of energy −33 kcal/mol ≤ E ≤
−28 kcal/mol is obtained. MC time series is not plotted, oth-
erwise the figure becomes confusing unless presented in color.

 

 

Fig. 2. The histogram of the energy landscape paving sim-
ulation at T = 50 K. The histograms are obtained follow-
ing the mth step of simulation, where each step involves
50 000 sweeps. At the step m = 10, the GEM has been vis-
ited about 25 000 times while the simulation up to then have
failed to find the GEM.

spends some time there to built histogram, then escapes
to search other regions. But when the search hits the same
pre-visited minima, it does not get trapped, almost imme-
diately leaves and freely searches till gets trapped in an-
other basin with lower energy. In a stepwise fashion, the
search tries to reach the global minima and afterwards the
stepwise entrapments disappear and the time series looks
like the typical time series of multicanonical simulation
(e.g. after 400 000 sweeps in Fig. 1).

In order to realize the dynamical feature of building
the histogram in ELP simulation, we present in Figure 2,
the histograms of the entries in each energy bin obtained
following the mth step of the simulation, where each step
involves 50 000 sweeps. The histogram for m = 1 is the
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Fig. 3. The histogram same as of Figure 2 obtained by the ELP
simulation at T = 250 K. Compared to the results of Figure 2,
to find the GEM took much longer and at the m = 20th step,
GEM had been visited about 10 000 times.

Fig. 4. The histogram of the multicanonical simulation. The
multicanonical histogram is typically flat already for m = 1
step while in the ELP histograms the low-energy region is en-
hanced. Compared to Figures 1 and 2, number of visits to the
lowest energy bin is much less for the multicanonical method.

typical standard Monte Carlo simulation peaked at the
narrow range of −33 kcal/mol ≤ E ≤ −28 kcal/mol. As
the time proceeds, the histogram get broader. At the step
with m = 10, which reads as the number of sweeps 500 000,
a fairly broad histogram is achieved with about 25 000 vis-
its to the lowest bin in energy. In Figure 3, we show the
histograms obtained in the ELP simulation of deltorphin
at T = 250 K. The lowest energy bin has not been visited
within the first 500 000 sweeps (m = 10) and visited about
10 000 times when the iteration time is extended up to one
million sweeps (m = 20).

Figure 4 displays the energy histograms for the mul-
ticanonical simulation of deltorphin. Comparing to the
previous two figures, one can follow how the energy his-
tograms are filled at mth step of iterations. Notice that
the lowest energy bin has been visited only 37 times within

the first one million iterations and has not been sampled
for the first 500 000.

For peptides it is not only of interest to obtain ther-
modynamic averages and fluctuations at different temper-
atures but also to find the most stable regions in confor-
mational space populated by the molecule, which allows
to identify the most stable wide microstates.

In Table 1 we have shown the number of conforma-
tions found in energy bins of 1 kcal/mol above the GEM
with ELP and MUCA methods. First part of the table
(part A) shows the result of the first 5×105 steps and the
second part (part B) is for total of 106 steps for both meth-
ods. Because the efficiency of ELP strongly depends on the
temperature, we carried out two different ELP simulations
each of 106 steps at temperatures T = 50 K and 250 K.
From the Table 1 it is obvious that ELP sampled more
low temperature conformations compared to MUCA, ex-
cept for the second and the third lowest energy bins where
the MUCA simulation encountered an entrapment in a
wide macrostate. In searching the low-energy conforma-
tions, ELP search at T = 50 K is clearly more effective
then the one at higher temperature.

Next, it is of interest to investigate the conformational
coverage provided by these methods, in particular in the
low energy region. In a recent work [8], we have investi-
gated the low energy microstates of deltorphin pertaining
to GEM by MUCA and the Monte Carlo Minimization
(MCM) method developed by Li and Scheraga [13]. While
MCM method includes minimization at each update step
and the simulated annealing (SA) works as a local opti-
mizer in its final phase, MUCA and ELP do not include
any minimization steps. In order to get better insight of
these algorithms, it would be fair to make another compar-
ison of the results of simulations after they are subjected
to further refinement. In order to classify the microstates
according to the potential wells they belong around ther-
modynamically stable different structures, each conforma-
tion of our simulation data was subjected to energy mini-
mization. Following the methods proposed by Meirovitch
et al. [14], we have adopted a variance criterion whereby
two structures are considered different if at least two cor-
responding dihedral angles differ by 2◦ or more. We mini-
mized by Newton-Raphson method the energy conforma-
tions generated in 106 sweeps of MUCA and ELP runs.
The lowest energy conformation (our suspected GEM)
is [8]

E = −44.1058 kcal/mol. (3)

The number of different structures found in energy bins of
1 kcal/mol above E = −44.11 kcal/mol appear in Table 2.
We compare the conformational coverage of the low en-
ergy region obtained with MUCA and two different ELP
simulations at T = 50 K and T = 250 K. The number of
different structures lying within the lowest energy bin ob-
tained after the minimization is greater for MUCA, while
ELP samples more structures at all energy ranges. This is
important due to the fact that MUCA covers a large range
of energies in an approximately homogeneous way, while
with ELP a strong preference is given for simulating the
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Table 1. Number of conformations in energy bins of 1.0 kcal/mol above E = −44.11 kcal/mol as obtained by the MUCA and
the ELP Methods. Part A shows the result of the first 5 × 105 sweeps and part B is for total of 106 sweeps.

Energy(Kcal/mol) MUCA ELP T = 50 K ELP T = 250 K

A −44.11 to −43.11 1 207 10 770 -

−43.11 to −42.11 20 116 13 825 3

−42.11 to −41.11 25 225 14 023 2 845

−41.11 to −40.11 7 506 13 863 99 86

−40.11 to -39.11 3 838 20 362 12 880

−39.11 to −38.11 4 729 20 449 14 503

B −44.11 to −43.11 2 674 27 729 10 843

−43.11 to −42.11 45 350 30 238 20 189

−42.11 to −41.11 46 091 32 962 22 656

−41.11 to −40.11 12 188 33 044 24 125

−40.11 to −39.11 8 485 33 192 25 245

−39.11 to −38.11 10 983 33 081 26 039

Table 2. Number of significantly different energy minimized
structures in energy bins of 1 kcal/mol above E = −44.11
kcal/mol as obtained by the MUCA and the ELP methods.
While Table 1 compares the number of conformations obtained
in MUCA and ELP simulations, here we present the number
of different conformations which are classified according to the
criterion mentioned in the text, obtained following the further
minimization of both data. The results of only 105 sweeps are
presented in the table.

Energy (Kcal/mol) MUCA ELP T = 50 K ELP T = 250 K

−44.11 to −43.11 1 566 764 1 171

−43.11 to −42.11 2 438 1 500 2 990

−42.11 to −41.11 2 670 2 983 4 306

−41.11 to −40.11 3 188 3 933 5 178

−40.11 to −39.11 2 855 4 638 6 139

−39.11 to −38.11 2 454 5 627 6 338

low energy region. Here we would like to remind the reader
that in MUCA simulation, one needs to carry out first a
tedious work to build the multicanonical parameters by at
least one million sweeps and then the production run is
performed, while with ELP one reaches to an even better
statistics in studying the low-energy structures by shorter
simulation with a much simpler form of weight function.
Therefore ELP is simpler to perform and saves computer
time for reaching the global energy minimum and also the
significant low energy conformations near the global en-
ergy minimum.

The objective of this work has been to investigate the
performance of the MUCA and ELP methods for peptides
in regard of investigating the most stable microstates per-
taining to the global energy minimum. Here, we simulated
the heptapeptide deltorphin with bulky side chains. A very
good coverage of the lowest energy bins is provided by the
two methods. However, extensively long computer time is
needed in MUCA simulation and the probability weight
factors are not a priori known and have to be determined
by iterations of trial simulations, while ELP simulation is
much simpler to implant and more effective in sampling
the lowest energy region of the conformational space.
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